Self-avoiding walks with nearest- and next-nearest-neighbour steps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 13 L243
(http://iopscience.iop.org/0305-4470/13/7/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:25

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Self-avoiding walks with nearest- and next-nearest-neighbour steps

J Oitmaa \dagger
Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2JI Canada

Received 21 April 1980

Abstract

Self-avoiding walks of 12 steps and fewer have been enumerated for the square lattice, for the case in which steps can occur between both nearest-neighbour and next-nearest-neighbour lattice sites. The appropriate two-variable generating function diverges along a critical line with a constant exponent $\gamma \sim \frac{4}{3}$, in agreement with general universality expectations.

The properties of self-avoiding walks (chains) on a regular lattice are of theoretical interest, as a general problem in lattice statistics. Their interest in physics stems mainly from their use in polymer physics, as models of polymer chains which incorporate excluded-volume effects. Self-avoiding walks also provide the largest contribution to the high-temperature susceptibility of the Ising model and are consequently of interest in the field of critical phenomena. A review by Domb (1969) gives an extensive discussion of the field.

Exact enumerations of short chains (up to $\sim 10-20$ steps) have been carried out for all of the regular two- and three-dimensional lattices, primarily at King's College, London (Martin et al 1967, Sykes et al 1972). From this work it has been well established that the chain generating function $C(x)$ has a power-law singularity at a 'critical point' x_{c} with asymptotic behaviour $C(x) \sim A\left(1-x / x_{c}\right)^{-\gamma}$. The critical exponent γ appears to be universal and has values close to, and possibly exactly equal to, $\frac{4}{3}$ and $\frac{7}{6}$ in two and three dimensions respectively. The amplitude A and the critical point x_{c} vary from lattice to lattice.

All of the previous studies have considered self-avoiding walks with only nearestneighbour steps, or chains with only nearest-neighbour links. It is possible to consider a more general problem, in which next-nearest-neighbour steps are also permitted. As part of a study of the Ising model with nearest- and next-nearest-neighbour interactions, we have enumerated such chains with up to and including 12 links on the square lattice. This Letter presents the data and a numerical analysis of the appropriate two-variable generating function. The enumeration was carried out directly, using the University of Alberta Amdahl 470 computer, and took about $3 \frac{1}{2}$ hours of cPu time.

We denote by $c_{m, n}$ the number of chains consisting of m nearest-neighbour links and n next-nearest-neighbour links. Table 1 gives the values of these coefficients for the

[^0]Table 1. Values of $c_{m, n}$-the number of chains with m nearest-neighbour and n next-nearest-neighbour steps, for the square lattice.

1	0	$0.4000000000 \mathrm{E}+01$	0	1	$0.4000000000 \mathrm{E}+01$	2	0	$0 \cdot 1200000000 \mathrm{E}+02$
1	1	$0.3200000000 \mathrm{E}+02$	0	2	$0 \cdot 1200000000 \mathrm{E}+02$	3	0	$0.3600000000 \mathrm{E}+02$
2	1	$0.1360000000 \mathrm{E}+03$	1	2	$0 \cdot 1600000000 \mathrm{E}+03$	0	3	$0.3600000000 \mathrm{E}+02$
4	0	$0 \cdot 1000000000 \mathrm{E}+03$	3	1	$0 \cdot 5280000000 \mathrm{E}+03$	2	2	$0.9360000000 \mathrm{E}+03$
1	3	$0.6720000000 \mathrm{E}+03$	0	4	$0 \cdot 1000000000 \mathrm{E}+03$	5	0	$0.2840000000 \mathrm{E}+03$
4	1	$0 \cdot 1824000000 \mathrm{E}+04$	3	2	$0.4568000000 \mathrm{E}+04$	2	3	$0.5088000000 \mathrm{E}+04$
1	4	$0.2528000000 \mathrm{E}+04$	0	5	$0.2840000000 \mathrm{E}+03$	6	0	$0.7800000000 \mathrm{E}+03$
5	1	$0 \cdot 6144000000 \mathrm{E}+04$	4	2	$0 \cdot 1900800000 \mathrm{E}+05$	3	3	$0.3024000000 \mathrm{E}+05$
2	4	$0.2404800000 \mathrm{E}+05$	1	5	$0.8928000000 \mathrm{E}+04$	0	6	$0.7800000000 \mathrm{E}+03$
7	0	$0.2172000000 \mathrm{E}+04$	6	1	$0.1958400000 \mathrm{E}+05$	5	2	$0.7453600000 \mathrm{E}+05$
4	3	$0 \cdot 1486000000 \mathrm{E}+06$	3	4	$0.1700560000 \mathrm{E}+06$	2	5	$0.1032720000 \mathrm{E}+06$
1	6	$0.3011200000 \mathrm{E}+05$	0	7	$0.2172000000 \mathrm{E}+04$	8	0	$0.5916000000 \mathrm{E}+04$
7	1	$0.6179200000 \mathrm{E}+05$	6	2	$0.2718640000 \mathrm{E}+06$	5	3	$0.6690400000 \mathrm{E}+06$
4	4	$0.9689600000 \mathrm{E}+06$	3	5	$0.8538720000 \mathrm{E}+06$	2	6	$0.4141040000 \mathrm{E}+06$
1	7	$0.9840000000 \mathrm{E}+05$	0	8	$0.5916000000 \mathrm{E}+04$	9	0	$0 \cdot 1626800000 \mathrm{E}+05$
8	1	$0 \cdot 1888000000 \mathrm{E}+06$	7	2	$0.9628960000 \mathrm{E}+06$	6	3	$0.2757792000 \mathrm{E}+07$
5	4	$0.4948712000 \mathrm{E}+07$	4	5	$0.5564840000 \mathrm{E}+07$	3	6	$0.3945000000 \mathrm{E}+07$
2	7	$0.1576280000 \mathrm{E}+07$	1	8	$0.3135040000 \mathrm{E}+06$	0	9	$0 \cdot 1626800000 \mathrm{E}+05$
10	0	$0.4410000000 \mathrm{E}+05$	9	1	$0.5736960000 \mathrm{E}+06$	8	2	$0.3268608000 \mathrm{E}+07$
7	3	$0 \cdot 1087076800 \mathrm{E}+08$	6	4	$0.2282424000 \mathrm{E}+08$	5	5	$0.3191502400 \mathrm{E}+08$
4	6	$0.2907042400 \mathrm{E}+08$	3	7	$0 \cdot 1709209600 \mathrm{E}+08$	2	8	$0.5762640000 \mathrm{E}+07$
1	9	$0.9798080000 \mathrm{E}+06$	0	10	$0.4410000000 \mathrm{E}+05$	11	0	$0 \cdot 1202920000 \mathrm{E}+06$
10	1	$0 \cdot 1706736000 \mathrm{E}+07$	9	2	$0.1090558400 \mathrm{E}+08$	8	3	$0.4068046400 \mathrm{E}+08$
7	4	$0.9937827200 \mathrm{E}+08$	6	5	$0.1633090720 \mathrm{E}+09$	5	6	$0.1856174800 \mathrm{E}+09$
4	7	$0 \cdot 1410679040 \mathrm{E}+09$	3	8	$0.7037113600 \mathrm{E}+08$	2	9	$0.2039430400 \mathrm{E}+08$
1	10	$0.3013472000 \mathrm{E}+07$	0	11	$0.1202920000 \mathrm{E}+06$	12	0	$0.3249320000 \mathrm{E}+06$
11	1	$0.5060224000 \mathrm{E}+07$	10	2	$0.3537817600 \mathrm{E}+08$	9	3	$0.1481604320 \mathrm{E}+09$
8	4	$0.4072642400 \mathrm{E}+09$	7	5	$0.7802576000 \mathrm{E}+09$	6	6	$0.1046265056 \mathrm{E}+10$
5	7	$0.9954415680 \mathrm{E}+09$	4	8	$0.6451958080 \mathrm{E}+09$	3	9	$0.2779377920 \mathrm{E}+09$
2	10	$0.7028842400 \mathrm{E}+08$	1	11	$0.9148832000 \mathrm{E}+07$	0	12	$0.3249320000 \mathrm{E}+06$

square lattice (for $m+n \leqslant 12$). A generating function can be defined by

$$
\begin{equation*}
C(x, y)=\sum_{m, n=0}^{\infty} c_{m, n} x^{m} y^{n} \tag{1}
\end{equation*}
$$

with $c_{0,0}=1$. For $y=0$ (or equivalently for $x=0$) the problem reduces to the usual one of chains with only nearest-neighbour links. We expect that the function $C(x, y)$ will diverge along a critical line in the (x, y) plane with a characteristic exponent γ which, according to general ideas of universality, should remain constant along this line.

Techniques for numerical analysis of such power series have been used with considerable success in the field of critical phenomena (see e.g. Gaunt and Guttmann 1974), and we have used these methods to determine the position of the critical line and to estimate the value of the exponent γ. We introduce polar coordinates (z, θ) and analyse single-variable series in z for fixed values of θ. For fixed θ the generating function is expected to have the asymptotic behaviour

$$
\begin{equation*}
C(z) \sim A(\theta)\left(1-z / z_{\mathrm{c}}(\theta)\right)^{-\gamma} . \tag{2}
\end{equation*}
$$

The series are most amenable to analysis by Padé approximants, and in table 2 we give some details for the case $\theta=45^{\circ}$. Results of similar consistency are obtained for

Table 2. Series analysis for $\theta=45^{\circ}$.
(a) Estimates of z_{c} from poles of $[N, D]$ Pade approximants to the series for $(\mathrm{d} / \mathrm{d} z) \log C(z)$.

$[7,4]$	$[6,5]$	$[5,6]$	$[4,7]$	$[6,4]$	$[5,5]$	$[4,6]$
0.242284	0.242285	0.242273	0.242287	0.242287	0.242265	0.242266

(b) Estimates of γ from Pade approximants to the series for $\left(z_{\mathrm{c}}-z\right)(\mathrm{d} / \mathrm{d} z) \log C(z)$, evaluated at $z_{\mathrm{c}}=$ $0 \cdot 24228$.

$[7,4]$	$[6,5]$	$[5,6]$	$[4,7]$	$[6,4]$	$[5,5]$	$[4,6]$
1.33335	1.33343	1.33343	1.33349	1.33345	1.33335	1.33346

(c) Estimates for z_{c} from poles of $[N, D]$ Pade approximants to the series for $[C(z)]^{1 / \gamma}$, with $\gamma=\frac{4}{3}$.

$[8,4]$	$[7,5]$	$[6,6]$	$[5,7]$	$[4,8]$	$[6,5]$	$[5,6]$
0.242280	0.242280	0.242278	0.242278	0.242280	0.242278	0.242278

other values of θ, and yield the locus of the critical line in the (x, y) plane as shown in figure 1. Ratio analysis is complicated by the presence of odd-even oscillations, characteristic of bipartite lattices. These oscillations are due to interfering negative singularities and are most pronounced near $\theta=0^{\circ}$ and $\theta=90^{\circ}$. The ratio results are consistent with but less precise than the Padé results. Estimates of the exponent γ are marked by a high degree of consistency, and provide strong evidence for the hypothesis that γ is constant along the entire critical line, and takes the value $\gamma=1.333\left(=\frac{4}{3}\right)$.

It is hoped that these results may be of some interest to workers in the field of lattice statistics. They are certainly of relevance in the study of the Ising model with nearestand next-nearest-neighbour interactions on the square lattice, and this topic will be discussed in a future publication. It is not clear whether chains of this type have any useful application in polymer problems.

Figure 1. The locus of the line of singularities of the generating function $C(x, y)$ in the (x, y) plane. The uncertainty is estimated to be considerably less than the drawn width of the line.

This work was carried out while the author held a visiting appointment at the University of Alberta. He thanks members of the Department of Physics for their hospitality and support.

References

Domb C 1969 Adv. Chem. Phys. 15 229-59
Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3 ed C Domb and M S Green (Academic Press)
Martin J L, Sykes M F and Hioe F T 1967 J. Chem. Phys. 46 3478-81
Sykes M F, Guttmann A J, Watts M G and Roberts P D 1972 J. Phys. A: Gen Phys. 5653-60

[^0]: \dagger On leave from School of Physics, University of New South Wales, Kensington, New South Wales, Australia 2033.

